Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Neurol Sci ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730131

ABSTRACT

BACKGROUND: Pain is a common non-motor symptom in patients with cervical dystonia (CD), severely impacting their quality of life. The pathophysiology of CD is incompletely understood but it involves altered processing of proprioceptive and pain signals. OBJECTIVES: The purpose of this proof-of-concept study was to determine if vibro-tactile stimulation (VTS)-a non-invasive form of neuromodulation targeting the somatosensory system-can modulate neck pain in people with CD. METHODS: In a multi-center study, 44 CD patients received VTS to sternocleidomastoid and/or trapezius muscles for up to 45 min under 9 different stimulation conditions that either targeted a single or a pair of muscles. The primary outcome measure was a perceived pain score (PPS) rated by participants on a 100-point analogue scale. RESULTS: During VTS, 29/44 (66%) of participants experienced a reduction in PPS of at least 10% with 17/44 (39%) reporting a reduction in pain of 50% or higher. After VTS cessation, 57% of participants still reported a 10% or higher reduction in PPS. Effects were significant at the group level and persisted for up to 20 min post-treatment. No distinct optimal stimulation profiles were identified for specific CD phenotypes. Clinical markers of disease severity or duration did not predict the degree of VTS-induced pain reduction. CONCLUSION: This proof-of-concept study demonstrates the potential of VTS as a new non-invasive therapeutic option for treating neck pain associated with CD. Further research needs to delineate optimal dosage and long-term effects.

2.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732980

ABSTRACT

Walking encompasses a complex interplay of neuromuscular coordination and cognitive processes. Disruptions in gait can impact personal independence and quality of life, especially among the elderly and neurodegenerative patients. While traditional biomechanical analyses and neuroimaging techniques have contributed to understanding gait control, they often lack the temporal resolution needed for rapid neural dynamics. This study employs a mobile brain/body imaging (MoBI) platform with high-density electroencephalography (hd-EEG) to explore event-related desynchronization and synchronization (ERD/ERS) during overground walking. Simultaneous to hdEEG, we recorded gait spatiotemporal parameters. Participants were asked to walk under usual walking and dual-task walking conditions. For data analysis, we extracted ERD/ERS in α, ß, and γ bands from 17 selected regions of interest encompassing not only the sensorimotor cerebral network but also the cognitive and affective networks. A correlation analysis was performed between gait parameters and ERD/ERS intensities in different networks in the different phases of gait. Results showed that ERD/ERS modulations across gait phases in the α and ß bands extended beyond the sensorimotor network, over the cognitive and limbic networks, and were more prominent in all networks during dual tasks with respect to usual walking. Correlation analyses showed that a stronger α ERS in the initial double-support phases correlates with shorter step length, emphasizing the role of attention in motor control. Additionally, ß ERD/ERS in affective and cognitive networks during dual-task walking correlated with dual-task gait performance, suggesting compensatory mechanisms in complex tasks. This study advances our understanding of neural dynamics during overground walking, emphasizing the multidimensional nature of gait control involving cognitive and affective networks.


Subject(s)
Brain , Electroencephalography , Gait , Walking , Humans , Gait/physiology , Male , Electroencephalography/methods , Brain/physiology , Brain/diagnostic imaging , Female , Adult , Walking/physiology , Nerve Net/physiology , Nerve Net/diagnostic imaging , Young Adult
3.
Sci Rep ; 14(1): 5207, 2024 03 03.
Article in English | MEDLINE | ID: mdl-38433230

ABSTRACT

Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the θ, α, and ß band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). Positive correlations were identified between VMIQ and avgERD of the middle cingulum in the ß band and with avgERD of the left insula, right precentral area, and right middle occipital region in the θ band. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.


Subject(s)
Gait , Gastropoda , Adult , Animals , Humans , Walking , Brain , Cell Membrane , Electroencephalography
4.
J Parkinsons Dis ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38250785

ABSTRACT

Action observation (AO) and motor imagery (MI) has emerged as promising tool for physiotherapy intervention in Parkinson's disease (PD). This narrative review summarizes why, how, and when applying AO and MI training in individual with PD. We report the neural underpinning of AO and MI and their effects on motor learning. We examine the characteristics and the current evidence regarding the effectiveness of physiotherapy interventions and we provide suggestions about their implementation with technologies. Neurophysiological data suggest a substantial correct activation of brain networks underlying AO and MI in people with PD, although the occurrence of compensatory mechanisms has been documented. Regarding the efficacy of training, in general evidence indicates that both these techniques improve mobility and functional activities in PD. However, these findings should be interpreted with caution due to variety of the study designs, training characteristics, and the modalities in which AO and MI were applied. Finally, results on long-term effects are still uncertain. Several elements should be considered to optimize the use of AO and MI in clinical setting, such as the selection of the task, the imagery or the video perspectives, the modalities of training. However, a comprehensive individual assessment, including motor and cognitive abilities, is essential to select which between AO and MI suite the best to each PD patients. Much unrealized potential exists for the use AO and MI training to provide personalized intervention aimed at fostering motor learning in both the clinic and home setting.

5.
Cerebellum ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147293

ABSTRACT

Temporal prediction (TP) influences our perception and cognition. The cerebellum could mediate this multi-level ability in a context-dependent manner. We tested whether a modulation of the cerebellar neural activity, induced by transcranial Direct Current Stimulation (tDCS), changed the TP ability according to the temporal features of the context and the duration of target interval. Fifteen healthy participants received anodal, cathodal, and sham tDCS (15 min × 2 mA intensity) over the right cerebellar hemisphere during a TP task. We recorded reaction times (RTs) to a target during the task in two contextual conditions of temporal anticipation: rhythmic (i.e., interstimulus intervals (ISIs) were constant) and single-interval condition (i.e., the estimation of the timing of the target was based on the prior exposure of the train of stimuli). Two ISIs durations were explored: 600 ms (short trials) and 900 ms (long trials). Cathodal tDCS improved the performance during the TP task (shorter RTs) specifically in the rhythmic condition only for the short trials and in the single-interval condition only for the long trials. Our results suggest that the inhibition of cerebellar activity induced a different improvement in the TP ability according to the temporal features of the context. In the rhythmic context, the cerebellum could integrate the temporal estimation with the anticipatory motor responses critically for the short target interval. In the single-interval context, for the long trials, the cerebellum could play a main role in integrating representation of time interval in memory with the elapsed time providing an accurate temporal prediction.

6.
Brain Res ; 1820: 148540, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37598900

ABSTRACT

INTRODUCTION: We recently demonstrated specific spectral signatures associated with updating of memory information, working memory (WM) maintenance and readout, with relatively high spatial resolution by means of high-density electroencephalography (hdEEG). WM is impaired already in early symptomatic HD (early-HD) and in pre-manifest HD (pre-HD). The aim of this study was to test whether hdEEG coupled to source localization allows for the identification of neuronal oscillations in specific frequency bands in 16 pre-HD and early-HD during different phases of a WM task. METHODS: We examined modulation of neural oscillations by event-related synchronization and desynchronization (ERS/ERD) of θ, ß, gamma low, γLOW and γHIGH EEG bands in a-priori selected large fronto-parietal network, including the insula and the cerebellum. RESULTS: We found: (i) Reduced θ oscillations in HD with respect to controls in almost all the areas of the WM network during the update and readout phases; (ii) Modulation of ß oscillations, which increased during the maintenance phase of the WM task in both groups; (iii) correlation of γHIGH oscillations during WM task with disease burden score in HD patients. CONCLUSIONS: Our data show reduced phase-specific modulation of oscillations in pre-HD and early-HD, even in the presence of preserved dynamic of modulation. Particularly, reduced synchronization in the θ band in the areas of the WM network, consistent with abnormal long-range coordination of neuronal activity within this network, was found in update and readout phases in HD groups.

7.
Neuroscience ; 526: 246-255, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37437801

ABSTRACT

Music is an important tool for the induction and regulation of emotion. Although learning a sequential motor behaviour is essential to normal motor function, to our knowledge, the role of music-induced emotion on motor learning has not been explored. Our experiment aimed to determine whether listening to different emotional music could influence motor sequence learning. We focused on two sub-components of motor sequence learning: the acquisition of the order of the elements in the sequence (the "what"), and the ability to carry out the sequence, combining the elements in a single, skilled action (the "how"). Twenty subjects performed a motor sequence-learning task with a digitizing tablet in three different experimental sessions. In each session they executed the task while listening to three different musical pieces, eliciting fearful, pleasant, and neutral mood. Eight targets were presented in a pre-set order and subjects were asked to learn the sequence while moving. Music-induced pleasure had an impact on movement kinematics with onset time and peak velocity decreasing and movement time increasing more with respect to neutral music session. Declarative learning, verbal recall of the sequence order, was improved under emotional manipulation, but only for fear-condition. Results suggest that music-induced emotion can influence both sub-components of motor learning in a different way. Music-induced pleasure may have improved motor components of sequence learning by means of increased striatal dopamine availability whereas music-induced fear may facilitate the recruitment of attentional circuits, thus acting on declarative knowledge of the sequence order.

8.
Front Neurol ; 14: 1205386, 2023.
Article in English | MEDLINE | ID: mdl-37448748

ABSTRACT

Background: Parkinson's disease (PD) patients experience deterioration in mobility with consequent inactivity and worsened health and social status. Physical activity and physiotherapy can improve motor impairments, but several barriers dishearten PD patients to exercise regularly. Home-based approaches (e.g., via mobile apps) and remote monitoring, could help in facing this issue. Objective: This study aimed at testing the feasibility, usability and training effects of a home-based exercise program using a customized version of Parkinson Rehab® application. Methods: Twenty PD subjects participated in a two-month minimally supervised home-based training. Daily session consisted in performing PD-specific exercises plus a walking training. We measured: (i) feasibility (training adherence), usability and satisfaction (via an online survey); (ii) safety; (iii) training effects on PD severity, mobility, cognition, and mood. Evaluations were performed at: baseline, after 1-month of training, at the end of training (T2), and at 1-month follow-up (T3). Results: Eighteen out of twenty participants completed the study without important adverse events. Participants' adherence was 91% ± 11.8 for exercise and 105.9% ± 30.6 for walking training. Usability and satisfaction survey scored 70.9 ± 7.7 out of 80. Improvements in PD severity, mobility and cognition were found at T2 and maintained at follow-up. Conclusion: The home-based training was feasible, safe and seems to positively act on PD-related symptoms, mobility, and cognition in patients with mild to moderate stage of PD disease. Additionally, the results suggest that the use of a mobile app might increase the amount of daily physical activity in our study population. Remote monitoring and tailored exercise programs appear to be key elements for promoting exercise. Future studies in a large cohort of PD participants at different stages of disease are needed to confirm these findings.

9.
Res Sq ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090654

ABSTRACT

Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography (hdEEG) in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the ß band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). VMIQ was positively correlated with avgERD of frontal and cingulate areas, whereas IA SCORE was positively correlated with avgERD of left inferior frontal and superior temporal regions. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.

10.
Neurosci Biobehav Rev ; 150: 105189, 2023 07.
Article in English | MEDLINE | ID: mdl-37086934

ABSTRACT

The difficulty in assessing FOG and the variety of existing cues, hamper to determine which cueing modality should be applied and which FOG-related aspect should be targeted to reach personalized treatments for FOG. This systematic review aimed to highlight: i) whether cues could reduce FOG and improve FOG-related gait parameters, ii) which cues are the most effective, iii) whether medication state (ON-OFF) affects cues-related results. Thirty-three repeated measure design studies assessing cueing effectiveness were included and subdivided according to gait tasks (gait initiation, walking, turning) and to the medication state. Main results reveal that: preparatory phase of gait initiation benefit from visual and auditory cues; spatio-temporal parameters (e.g., step and stride length) are improved by visual cues during walking; turning time and step time variability are reduced by applying auditory and visual cues. Some findings on the potential benefits of cueing on FOG and FOG gait-related parameters were found. Questions remain about which are the best behavioral strategies according to FOG features and PD clinical characteristics.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Humans , Parkinson Disease/complications , Cues , Gait Disorders, Neurologic/etiology , Gait , Walking
11.
Front Hum Neurosci ; 16: 862013, 2022.
Article in English | MEDLINE | ID: mdl-36277054

ABSTRACT

We recently demonstrated, by means of short latency afferent inhibition (SAI), that before an imagined movement, during the reaction time (RT), SAI decreases only in the movement-related muscle (sensorimotor modulation) and that a correlation exists between sensorimotor modulation and motor imagery (MI) ability. Excitatory anodal transcranial direct current stimulation (a-tDCS) on M1 could enhance the MI outcome; however, mechanisms of action are not completely known. Here, we assessed if a-tDCS on M1 prior to an MI task could affect sensorimotor modulation. Participants imagined abducting the index or little finger in response to an acoustic signal. SAI was evaluated from the first dorsal interosseus after the "go" signal, before the expected electromyographic (EMG) activity. Participants received 20-min 1.5 mA a-tDCS or sham-tDCS on M1 on two different days, in random order. Results showed that a-tDCS on M1 increases the sensorimotor modulation consisting of a weakening of SAI after the Go signal with respect to sham-tDCS, in the movement-related muscle right before the beginning of MI. These results suggest that a-tDCS on M1 further potentiate those circuits responsible for sensorimotor modulation in the RT phase of MI. Increased sensorimotor modulation during MI may be one of the mechanisms involved in MI improvement after a-tDCS over M1.

12.
Front Neurosci ; 16: 912075, 2022.
Article in English | MEDLINE | ID: mdl-35720696

ABSTRACT

Gait is a common but rather complex activity that supports mobility in daily life. It requires indeed sophisticated coordination of lower and upper limbs, controlled by the nervous system. The relationship between limb kinematics and muscular activity with neural activity, referred to as neurokinematic and neuromuscular connectivity (NKC/NMC) respectively, still needs to be elucidated. Recently developed analysis techniques for mobile high-density electroencephalography (hdEEG) recordings have enabled investigations of gait-related neural modulations at the brain level. To shed light on gait-related neurokinematic and neuromuscular connectivity patterns in the brain, we performed a mobile brain/body imaging (MoBI) study in young healthy participants. In each participant, we collected hdEEG signals and limb velocity/electromyography signals during treadmill walking. We reconstructed neural signals in the alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-50 Hz) frequency bands, and assessed the co-modulations of their power envelopes with myogenic/velocity envelopes. Our results showed that the myogenic signals have larger discriminative power in evaluating gait-related brain-body connectivity with respect to kinematic signals. A detailed analysis of neuromuscular connectivity patterns in the brain revealed robust responses in the alpha and beta bands over the lower limb representation in the primary sensorimotor cortex. There responses were largely contralateral with respect to the body sensor used for the analysis. By using a voxel-wise analysis of variance on the NMC images, we revealed clear modulations across body sensors; the variability across frequency bands was relatively lower, and below significance. Overall, our study demonstrates that a MoBI platform based on hdEEG can be used for the investigation of gait-related brain-body connectivity. Future studies might involve more complex walking conditions to gain a better understanding of fundamental neural processes associated with gait control, or might be conducted in individuals with neuromotor disorders to identify neural markers of abnormal gait.

13.
Hum Brain Mapp ; 43(11): 3404-3415, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35384123

ABSTRACT

Balance and walking are fundamental to support common daily activities. Relatively accurate characterizations of normal and impaired gait features were attained at the kinematic and muscular levels. Conversely, the neural processes underlying gait dynamics still need to be elucidated. To shed light on gait-related modulations of neural activity, we collected high-density electroencephalography (hdEEG) signals and ankle acceleration data in young healthy participants during treadmill walking. We used the ankle acceleration data to segment each gait cycle in four phases: initial double support, right leg swing, final double support, left leg swing. Then, we processed hdEEG signals to extract neural oscillations in alpha, beta, and gamma bands, and examined event-related desynchronization/synchronization (ERD/ERS) across gait phases. Our results showed that ERD/ERS modulations for alpha, beta, and gamma bands were strongest in the primary sensorimotor cortex (M1), but were also found in premotor cortex, thalamus and cerebellum. We observed a modulation of neural oscillations across gait phases in M1 and cerebellum, and an interaction between frequency band and gait phase in premotor cortex and thalamus. Furthermore, an ERD/ERS lateralization effect was present in M1 for the alpha and beta bands, and in the cerebellum for the beta and gamma bands. Overall, our findings demonstrate that an electrophysiological source imaging approach based on hdEEG can be used to investigate dynamic neural processes of gait control. Future work on the development of mobile hdEEG-based brain-body imaging platforms may enable overground walking investigations, with potential applications in the study of gait disorders.


Subject(s)
Motor Cortex , Sensorimotor Cortex , Electroencephalography , Gait/physiology , Humans , Motor Cortex/physiology , Walking/physiology
14.
Sci Rep ; 12(1): 6998, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35488018

ABSTRACT

Visual processing of emotional stimuli has been shown to engage complex cortical and subcortical networks, but it is still unclear how it affects sensorimotor integration processes. To fill this gap, here, we used a TMS protocol named short-latency afferent inhibition (SAI), capturing sensorimotor interactions, while healthy participants were observing emotional body language (EBL) and International Affective Picture System (IAPS) stimuli. Participants were presented with emotional (fear- and happiness-related) or non-emotional (neutral) EBL and IAPS stimuli while SAI was tested at 120 ms and 300 ms after pictures presentation. At the earlier time point (120 ms), we found that fear-related EBL and IAPS stimuli selectively enhanced SAI as indexed by the greater inhibitory effect of somatosensory afferents on motor excitability. Larger early SAI enhancement was associated with lower scores at the Behavioural Inhibition Scale (BIS). At the later time point (300 ms), we found a generalized SAI decrease for all kind of stimuli (fear, happiness or neutral). Because the SAI index reflects integrative activity of cholinergic sensorimotor circuits, our findings suggest greater sensitivity of such circuits during early (120 ms) processing of threat-related information. Moreover, the correlation with BIS score may suggest increased attention and sensory vigilance in participants with greater anxiety-related dispositions. In conclusion, the results of this study show that sensorimotor inhibition is rapidly enhanced while processing threatening stimuli and that SAI protocol might be a valuable option in evaluating emotional-motor interactions in physiological and pathological conditions.


Subject(s)
Evoked Potentials, Motor , Motor Cortex , Emotions/physiology , Evoked Potentials, Motor/physiology , Humans , Motor Cortex/physiology , Neural Inhibition/physiology , Transcranial Magnetic Stimulation/methods
15.
Sci Rep ; 12(1): 4314, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35279682

ABSTRACT

The aim of this study was to investigate differences between usual and complex gait motor imagery (MI) task in healthy subjects using high-density electroencephalography (hdEEG) with a MI protocol. We characterized the spatial distribution of α- and ß-bands oscillations extracted from hdEEG signals recorded during MI of usual walking (UW) and walking by avoiding an obstacle (Dual-Task, DT). We applied a source localization algorithm to brain regions selected from a large cortical-subcortical network, and then we analyzed α and ß bands Event-Related Desynchronizations (ERDs). Nineteen healthy subjects visually imagined walking on a path with (DT) and without (UW) obstacles. Results showed in both gait MI tasks, α- and ß-band ERDs in a large cortical-subcortical network encompassing mostly frontal and parietal regions. In most of the regions, we found α- and ß-band ERDs in the DT compared with the UW condition. Finally, in the ß band, significant correlations emerged between ERDs and scores in imagery ability tests. Overall we detected MI gait-related α- and ß-band oscillations in cortical and subcortical areas and significant differences between UW and DT MI conditions. A better understanding of gait neural correlates may lead to a better knowledge of pathophysiology of gait disturbances in neurological diseases.


Subject(s)
Gait , Imagery, Psychotherapy , Brain/physiology , Electroencephalography , Gait/physiology , Humans , Imagination/physiology , Walking/physiology
16.
Behav Neurol ; 2022: 6487419, 2022.
Article in English | MEDLINE | ID: mdl-36755906

ABSTRACT

In healthy people, motor resonance mechanisms are flexible to negative emotional contextual clues with greater motor resonance during the observation of a reach to grasp movement performed in an environment eliciting disgust. The link between emotion and motor control has become an interesting topic in Parkinson's disease (PD). Here, we aimed to study the response of the mirror neuron system, specifically motor resonance, to an emotion-enriched context in people with PD. Corticospinal excitability was recorded in a total of 44 participants, divided into two groups (23 PD patients and 21 healthy subjects). We recorded motor-evoked potentials from a muscle involved in the grasping movement while participants were watching the same reach-to-grasp movement embedded in surrounds with negative emotional valence, but different levels of arousal: sadness (low arousal) and disgust (high arousal). Basic motor resonance mechanisms were less efficient in PD than controls. Responsiveness to emotional contextual clues eliciting sadness was similar between PD and controls, whereas responsiveness to emotional contextual clues eliciting disgust was impaired in PD patients. Our findings show reduced motor resonance flexibility to the disgusting context, supporting the hypothesis that PD patients may have a deficit in "translating" an aversive motivational state into a physiologic response. The amygdala, which is implicated in the appraisal of fearful stimuli and response to threatening situations, might be implicated in this process.


Subject(s)
Mental Disorders , Parkinson Disease , Humans , Parkinson Disease/psychology , Emotions/physiology , Fear
17.
J Neural Eng ; 18(6)2021 12 28.
Article in English | MEDLINE | ID: mdl-34874319

ABSTRACT

Objective.Electroencephalography (EEG) is a widely used technique to address research questions about brain functioning, from controlled laboratorial conditions to naturalistic environments. However, EEG data are affected by biological (e.g. ocular, myogenic) and non-biological (e.g. movement-related) artifacts, which-depending on their extent-may limit the interpretability of the study results. Blind source separation (BSS) approaches have demonstrated to be particularly promising for the attenuation of artifacts in high-density EEG (hdEEG) data. Previous EEG artifact removal studies suggested that it may not be optimal to use the same BSS method for different kinds of artifacts.Approach.In this study, we developed a novel multi-step BSS approach to optimize the attenuation of ocular, movement-related and myogenic artifacts from hdEEG data. For validation purposes, we used hdEEG data collected in a group of healthy participants in standing, slow-walking and fast-walking conditions. During part of the experiment, a series of tone bursts were used to evoke auditory responses. We quantified event-related potentials (ERPs) using hdEEG signals collected during an auditory stimulation, as well as the event-related desynchronization (ERD) by contrasting hdEEG signals collected in walking and standing conditions, without auditory stimulation. We compared the results obtained in terms of auditory ERP and motor-related ERD using the proposed multi-step BSS approach, with respect to two classically used single-step BSS approaches.Main results. The use of our approach yielded the lowest residual noise in the hdEEG data, and permitted to retrieve stronger and more reliable modulations of neural activity than alternative solutions. Overall, our study confirmed that the performance of BSS-based artifact removal can be improved by using specific BSS methods and parameters for different kinds of artifacts.Significance.Our technological solution supports a wider use of hdEEG-based source imaging in movement and rehabilitation studies, and contributes to the further development of mobile brain/body imaging applications.


Subject(s)
Algorithms , Artifacts , Brain/physiology , Brain Mapping , Electroencephalography/methods , Eye Movements , Humans , Signal Processing, Computer-Assisted
18.
Clin Neurophysiol ; 132(12): 3095-3103, 2021 12.
Article in English | MEDLINE | ID: mdl-34740041

ABSTRACT

OBJECTIVE: Transcranial magnetic stimulation (TMS) delivered over the cerebellum 5-7 ms prior to a stimulus over the contralateral primary motor cortex (M1) reduces the excitability of M1 output, a phenomenon termed cerebellar brain inhibition (CBI). The cerebellum receives sensory information for adaptive motor coordination and motor planning. Here, we explored through TMS whether a peripheral electrical stimulus modulates CBI. METHODS: We studied the effect of right median nerve electrical stimulation (ES) on CBI from right cerebellum (conditioning stimulus, CS) to left M1 (test stimulus, TS) in 12 healthy subjects. The following ES-CS inter-stimulus intervals (ISIs) were tested: 25, 30 and 35 ms. CS-TS ISI was set at 5 ms. RESULTS: We found significantly weaker CBI when the ES was delivered 25 ms (p < 0.001) and 35 ms (p < 0.001) earlier the CS over the ipsilateral cerebellum and a trend for 30 ms ES-CS ISI (p = 0.07). CONCLUSIONS: We hypothesize that the activation of cerebellar interneurons together with intrinsic properties of Purkinje cells may be responsible of the decreased CBI when the peripheral stimulation preceded the cerebellar stimulation of 25 and 35 ms. SIGNIFICANCE: To test the interaction between somatosensory inputs and cerebello-cortical pathway may be important in a variety of motor tasks and neuropsychiatric disorders.


Subject(s)
Cerebellum/physiology , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Adult , Electric Stimulation , Female , Humans , Male , Median Nerve/physiology , Muscle, Skeletal/physiology , Neural Pathways/physiology , Transcranial Magnetic Stimulation , Young Adult
19.
Nutrients ; 13(8)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34444947

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a respiratory disease associated with airways inflammation and lung parenchyma fibrosis. The primary goals of COPD treatment are to reduce symptoms and risk of exacerbations, therefore pulmonary rehabilitation is considered the key component of managing COPD patients. Oxidative airway damage, inflammation and reduction of endogenous antioxidant enzymes are known to play a crucial role in the pathogenesis of COPD. Recently, also natural antioxidants have been considered as they play an important role in metabolism, DNA repair and fighting the effects of oxidative stress. In this paper we evaluated the response of 105 elderly COPD patients to pulmonary rehabilitation (PR), based on high or low vegetable consumption, by analyzing clinical parameters and biological measurements at baseline and after completion of the three weeks PR. We found that daily vegetable intake in normal diet, without any specific intervention, can increase the probability to successfully respond to rehabilitation (65.4% of responders ate vegetables daily vs. 40.0% of non-responders, p = 0.033). The association was especially evident in subjects ≥ 80 year of age (OR = 17.0; p < 0.019). Three weeks of pulmonary rehabilitation are probably too short to reveal a reduction of the oxidative stress and DNA damage, but are enough to show an improvement in the patient's inflammatory state.


Subject(s)
Diet, Healthy/methods , Eating/physiology , Elder Nutritional Physiological Phenomena/physiology , Pulmonary Disease, Chronic Obstructive/rehabilitation , Vegetables , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Aged , Aged, 80 and over , Bronchodilator Agents/administration & dosage , DNA Damage/physiology , Diet Surveys , Female , Humans , Inflammation , Lung/metabolism , Male , Oxidative Stress/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Treatment Outcome
20.
J Neural Eng ; 18(4)2021 08 02.
Article in English | MEDLINE | ID: mdl-34342270

ABSTRACT

Objective. Electroencephalography (EEG) cleaning has been a longstanding issue in the research community. In recent times, huge leaps have been made in the field, resulting in very promising techniques to address the issue. The most widespread ones rely on a family of mathematical methods known as blind source separation (BSS), ideally capable of separating artefactual signals from the brain originated ones. However, corruption of EEG data still remains a problem, especially in real life scenario where a mixture of artefact components affects the signal and thus correctly choosing the correct cleaning procedure can be non trivial. Our aim is here to evaluate and score the plethora of available BSS-based cleaning methods, providing an overview of their advantages and downsides and of their best field of application.Approach. To address this, we here first characterized and modeled different types of artefact, i.e. arising from muscular or blinking activity as well as from transcranial alternate current stimulation. We then tested and scored several BSS-based cleaning procedures on semi-synthetic datasets corrupted by the previously modeled noise sources. Finally, we built a lifelike dataset affected by many artefactual components. We tested an iterative multistep approach combining different BSS steps, aimed at sequentially removing each specific artefactual component.Main results. We did not find an overall best method, as different scenarios require different approaches. We therefore provided an overview of the performance in terms of both reconstruction accuracy and computational burden of each method in different use cases.Significance. Our work provides insightful guidelines for signal cleaning procedures in the EEG related field.


Subject(s)
Algorithms , Artifacts , Brain , Brain Mapping , Electroencephalography , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...